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Typical inference

Confidence intervals and inverting the test:

I Consider the following general quantity, which follows a
familiar form:

S =
b„ − „cSE(b„)

I When using this quantity to construct CIs, we often rely on
two particular properties:
I S is pivotal in large samples, meaning its asymptotic

distribution does not depend upon „.
I S possesses a distribution that is approximately symmetric

about zero in large samples.
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Typical inference

Confidence intervals and inverting the test:

I Consider a coefficient, ˛, from a regression model:b̨− ˛cSE( b̨) ·∼ tdf :

I Note that the pivotal property is embedded above. Further,

t¸=2;df ≤ b̨−˛bSE(b̨) ≤ t1−¸=2;df

⇐⇒ t¸=2;dfcSE( b̨) ≤ b̨− ˛ ≤ t1−¸=2;dfcSE( b̨)
⇐⇒ −t1−¸=2;dfcSE( b̨) ≤ ˛ − b̨ ≤ −t¸=2;dfcSE( b̨)

⇐⇒ b̨− t1−¸=2;dfcSE( b̨) ≤ ˛ ≤ b̨− t¸=2;dfcSE( b̨)
I From symmetry property, further derive the following:b̨− t1−¸=2;dfcSE( b̨) ≤ ˛ ≤ b̨+ t1−¸=2;dfcSE( b̨)
I These properties are the basis for forming symmetric CIs

based on large sample theory.
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Typical inference

Confidence intervals and inverting the test:

I When no such pivotal quantity exists, confidence intervals can
be obtained by directly inverting the test.

I “Find all ˛(0) such that H0 : ˛ = ˛(0) cannot be rejected.”
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Typical inference

Confidence intervals and inverting the test:

I In linear regression, an exact distribution for b̨ based on the
t-distribution depends upon normality of the errors.

I That distribution is approximately correct for large samples
even if normality does not hold.

I In smaller samples, the nonparametric bootstrap can be used
to obtain CIs that do not rely on large sample theory.
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The bootstrap

Main ideas:

I Let F denote cdf for (X; Y ) or (Y |X), depending on context;
let FN denote empirical cdf based on N observations.
I ˛ = T (F ), and hence b̨ = T (FN).
I Absent parametric form, FN is our best estimate of F .

I Repeat-sample of FN with replacement gives information on
distribution of b̨∗ = T (F∗

N); asterisk denotes fixed FN .

I Let { b̨∗b}Bb=1 denote the (bootstrap) samples.
I Note two layers of variation:

I How well FN approximates F (better as N ↗∞ by
Glivencko-Cantelli: supt∈[0;1] |F (t)− FN(t)| −→a.s. 0).

I How well { b̨∗b}Bb=1 approximates T (F∗N) (better as B ↗∞).

I Which source of variation can we better control?
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The bootstrap

Estimator-attributed bias:

I Let b̨∗b = T (F ∗
N:b) denote estimate based on bth bootstrap

sample. We may estimate bias as follows:

dBias =
1

B

BX
b=1

(T (F∗
N:b)− T (FN))

=
1

B

BX
b=1

b̨∗
b − b̨ = b̨∗ − b̨ ≈ b̨− ˛:

I Note that b̨∗ = 1
B

PB
b=1

b̨∗
b for simplicity.

I Correction won’t catch external sources of bias; be warned.



1021

The bootstrap

Covariance:

I We may estimate the covariance as well:

dCov
“ b̨” =

1

B − 1

BX
b=1

( b̨∗b − b̨∗)( b̨∗b − b̨∗)T

I For the kth coefficient, we have:

bvk = dVar( b̨k) =
1

B

BX
b=1

([ b̨∗b]k − b̨∗k)2
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The bootstrap

Confidence intervals: Normal approximation (bias-correction)

I Symmetric (1− ¸) CI:

( b̨k − dBiask)±
pbvkz1−¸=2

I Assumptions:
I b̨

k − ˛k
·∼ N (Biask ; ff

2), which is symmetric and pivotal.
I dBiask and bvk are good estimates of Biask and ff2.

I Good for cases where N is large enough that normal
approximation holds, but no known theoretical formula for
asymptotic variance.

I Can use QQ-plots to evaluate departures from normality.
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The bootstrap

Confidence intervals: Pivot based

I Let b̨∗k(p) denote pth quantile of kth coefficient of { b̨∗k}Bb=1.

I Behavior of ˛k − b̨k approximately that of b̨k − b̨∗k :

0:95 ≈ P
“b̨∗

k(¸=2) ≤ b̨∗k ≤ b̨∗k(1−¸=2)”
= P

“b̨
k − b̨∗k(1−¸=2) ≤ b̨k − b̨∗k ≤ b̨k − b̨∗k(¸=2)”

≈ P
“b̨

k − b̨∗k(1−¸=2) ≤ ˛k − b̨k ≤ b̨k − b̨∗k(¸=2)”
= P

“
2 b̨k − b̨∗k(1−¸=2) ≤ ˛k ≤ 2 b̨k − b̨∗k(¸=2)”

I Assumptions:
I b̨

k − ˛k asymptotically pivotal (not necessarily symmetric).
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The bootstrap

Confidence intervals:

I There are plenty of other of bootstrap-based confidence
intervals. One simple one I did not cover is based on the
quantiles of the bootstrap samples.

I The pivot-based confidence interval is generally understood to
have better properties.

I See empirical process theory for all kinds of other
generalizations, extensions, theoretical results.
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The bootstrap

Linear regression: Fixed design

I Re-sample residuals b›∗i from the existing residuals {b›i}Ni=1 with
replacement.

I Keep xi intact and form N new outcomes as y∗i = xTi
b̨+ b›∗i

for i = 1; : : : ; N.

I Estimate b̨∗b for b = 1; : : : ; N; form estimates/confidence
intervals of your choosing from prior methods.

I Assumptions:
I Homoscedasticity of errors.
I Correct mean-model.

I Consistent with a designed experiment/randomized trial.

I If X is discrete, you can simply leave the x’s as they are and
resample the outcomes separately within subgroup of X.



1026

The bootstrap

Linear regression: Random design

I Re-sample pairs (x∗i ; y
∗
i ) from existing observations {xi ; yi}Ni=1

with replacement.

I Estimate b̨∗b for b = 1; : : : ; N; form estimates/confidence
intervals of your choosing from prior methods.

I Design changes with each sample.

I Consistent with an observational study.
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The bootstrap

Linear regression: Fixed vs. random design

I Assume homoscedastic errors.

I If the mean model is correct, either version of the bootstrap
should perform well regardless of whether X is fixed by design
or random.

I If X is fixed by design, mean-model misspecification will tend
to result in an overstated variance if you treat X as random.

I If X is random by design, mean-model misspecification will
tend to result in an understated variance if you treat X as
fixed.
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The bootstrap

Stata: Example (MRI)

I regress height age, robust (recall)

I regress height age, vce(bs, reps(500))

I regress height age, vce(bs, reps(500) nodots)

I estat bootstrap, all
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The bootstrap

Stata: Example (MRI)
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The bootstrap

Stata: Example (MRI)

I N: Normal CI

I P: Percentile CI

I BC: Bias-corrected CI
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The bootstrap

Notes:

I There is plenty more to say about the bootstrap.

I You’ll have to take advanced regression courses to learn more.
Or study empirical process theory if you want to learn it from
that angle :).


