BIOS 6312: Modern Regression Analysis

Andrew J. Spieker, Ph.D.

Assistant Professor of Biostatistics Vanderbilt University Medical Center

Set 11: Bootstrap Methods

Version: 04/15/2021

Topics:

- Review of typical inference
- ► The nonparametric bootstrap

Topics:

- Review of typical inference
- ► The nonparametric bootstrap

 Consider the following general quantity, which follows a familiar form:

$$S = rac{\widehat{ heta} - heta}{\widehat{\mathsf{SE}}(\widehat{ heta})}$$

- When using this quantity to construct Cls, we often rely on two particular properties:
 - S is *pivotal* in large samples, meaning its asymptotic distribution does not depend upon θ.
 - S possesses a distribution that is approximately symmetric about zero in large samples.

• Consider a coefficient, β , from a regression model:

$$rac{\widehat{oldsymbol{eta}}-oldsymbol{eta}}{\widehat{\mathsf{SE}}(\widehat{oldsymbol{eta}})}\stackrel{.}{\sim} t_{d\!f}$$
 .

Note that the pivotal property is embedded above. Further,

$$\begin{split} t_{\alpha/2,df} &\leq \quad \frac{\widehat{\beta}-\beta}{\widehat{\mathsf{SE}}(\widehat{\beta})} \quad \leq t_{1-\alpha/2,df} \\ \iff t_{\alpha/2,df} \widehat{\mathsf{SE}}(\widehat{\beta}) &\leq \quad \widehat{\beta}-\beta \quad \leq t_{1-\alpha/2,df} \widehat{\mathsf{SE}}(\widehat{\beta}) \\ \iff -t_{1-\alpha/2,df} \widehat{\mathsf{SE}}(\widehat{\beta}) &\leq \quad \beta-\widehat{\beta} \quad \leq -t_{\alpha/2,df} \widehat{\mathsf{SE}}(\widehat{\beta}) \\ \iff \widehat{\beta}-t_{1-\alpha/2,df} \widehat{\mathsf{SE}}(\widehat{\beta}) &\leq \quad \beta \quad \leq \widehat{\beta}-t_{\alpha/2,df} \widehat{\mathsf{SE}}(\widehat{\beta}) \end{split}$$

From symmetry property, further derive the following:

$$\widehat{\beta} - t_{1-\alpha/2,\textit{df}} \widehat{\mathsf{SE}}(\widehat{\beta}) \leq -\beta - \leq \widehat{\beta} + t_{1-\alpha/2,\textit{df}} \widehat{\mathsf{SE}}(\widehat{\beta})$$

These properties are the basis for forming symmetric CIs based on large sample theory.

- When no such pivotal quantity exists, confidence intervals can be obtained by directly inverting the test.
- "Find all $\beta^{(0)}$ such that $H_0: \beta = \beta^{(0)}$ cannot be rejected."

- ln linear regression, an *exact* distribution for $\hat{\beta}$ based on the *t*-distribution depends upon normality of the errors.
- That distribution is approximately correct for large samples even if normality does not hold.
- In smaller samples, the nonparametric bootstrap can be used to obtain CIs that do not rely on large sample theory.

Topics:

- ► Review of typical inference
- ► The nonparametric bootstrap

Preliminaries: \mathbb{F}_N , approximates $F(x) = P(X \le x)$

Preliminaries: \mathbb{F}_N , approximates $F(x) = P(X \le x)$

Main ideas:

- Let *F* denote cdf for (\mathbf{X}, Y) or $(Y|\mathbf{X})$, depending on context; let \mathbb{F}_N denote empirical cdf based on *N* observations.
 - $\boldsymbol{\beta} = T(F)$, and hence $\widehat{\boldsymbol{\beta}} = T(\mathbb{F}_N)$.
 - Absent parametric form, \mathbb{F}_N is our best estimate of F.
- ▶ Repeat-sample of 𝔽_N with replacement gives information on distribution of β̂^{*} = 𝒯(𝔽^{*}_N); asterisk denotes fixed 𝔽_N.
- Let $\{\widehat{\beta}_b^*\}_{b=1}^B$ denote the (bootstrap) samples.
- Note two layers of variation:
 - ► How well \mathbb{F}_N approximates F (better as $N \nearrow \infty$ by Glivencko-Cantelli: $\sup_{t \in [0,1]} |F(t) \mathbb{F}_N(t)| \longrightarrow_{a.s.} 0$).
 - ▶ How well $\{\widehat{\beta}_b^*\}_{b=1}^B$ approximates $T(\mathbb{F}_N^*)$ (better as $B \nearrow \infty$).
- Which source of variation can we better control?

Estimator-attributed bias:

Let β^{*}_b = T(F^{*}_{N:b}) denote estimate based on bth bootstrap sample. We may estimate bias as follows:

$$\widehat{\mathsf{Bias}} = \frac{1}{B} \sum_{b=1}^{B} (T(\mathbb{F}_{N:b}^{*}) - T(\mathbb{F}_{N}))$$
$$= \frac{1}{B} \sum_{b=1}^{B} \widehat{\beta}_{b}^{*} - \widehat{\beta} = \widehat{\beta}^{*} - \widehat{\beta} \approx \widehat{\beta} - \beta$$

- Note that $\widehat{\beta}^* = \frac{1}{B} \sum_{b=1}^{B} \widehat{\beta}^*_b$ for simplicity.
- Correction won't catch external sources of bias; be warned.

Covariance:

► We may estimate the covariance as well:

$$\widehat{\mathsf{Cov}}\left(\widehat{\boldsymbol{\beta}}\right) = \frac{1}{B-1} \sum_{b=1}^{B} (\widehat{\boldsymbol{\beta}}_{b}^{*} - \widehat{\boldsymbol{\beta}}^{*}) (\widehat{\boldsymbol{\beta}}_{b}^{*} - \widehat{\boldsymbol{\beta}}^{*})^{T}$$

For the k^{th} coefficient, we have:

$$\widehat{\mathbf{v}}_k = \widehat{\operatorname{Var}}(\widehat{oldsymbol{eta}}_k) = rac{1}{B}\sum_{b=1}^B ([\widehat{oldsymbol{eta}}_b^*]_k - \widehat{oldsymbol{eta}}_k^*)^2$$

Confidence intervals: Normal approximation (bias-correction)

Symmetric
$$(1 - \alpha)$$
 CI:

$$(\widehat{oldsymbol{eta}}_k - \widehat{\mathsf{Bias}}_k) \pm \sqrt{\widehat{v}_k} z_{1-lpha/2}$$

Assumptions:

- $\hat{\beta}_k \beta_k \sim \mathcal{N}(\text{Bias}_k, \sigma^2)$, which is symmetric and pivotal.
- $\widehat{\text{Bias}}_k$ and \widehat{v}_k are good estimates of Bias_k and σ^2 .
- Good for cases where N is large enough that normal approximation holds, but no known theoretical formula for asymptotic variance.
- Can use QQ-plots to evaluate departures from normality.

Confidence intervals: Pivot based

Let β^{*}_{k(p)} denote pth quantile of kth coefficient of {β^{*}_k}^B_{b=1}.
Behavior of β_k − β^{*}_k approximately that of β^{*}_k − β^{*}_k:

Assumptions:

• $\hat{\beta}_k - \beta_k$ asymptotically pivotal (not necessarily symmetric).

Confidence intervals:

- There are plenty of other of bootstrap-based confidence intervals. One simple one I did not cover is based on the quantiles of the bootstrap samples.
- The pivot-based confidence interval is generally understood to have better properties.
- See empirical process theory for all kinds of other generalizations, extensions, theoretical results.

Linear regression: Fixed design

- ► Re-sample residuals \$\tilde{\varepsilon_i}\$ from the existing residuals \$\{\varepsilon_i\}_{i=1}^N\$ with replacement.
- Keep \mathbf{x}_i intact and form N new outcomes as $y_i^* = \mathbf{x}_i^T \hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\epsilon}}_i^*$ for i = 1, ..., N.
- Estimate $\hat{\beta}_b^*$ for b = 1, ..., N; form estimates/confidence intervals of your choosing from prior methods.
- Assumptions:
 - Homoscedasticity of errors.
 - Correct mean-model.
- Consistent with a designed experiment/randomized trial.
- If X is discrete, you can simply leave the x's as they are and resample the outcomes separately within subgroup of X.

Linear regression: Random design

- Re-sample pairs (x^{*}_i, y^{*}_i) from existing observations {x_i, y_i}^N_{i=1} with replacement.
- Estimate $\hat{\beta}_b^*$ for b = 1, ..., N; form estimates/confidence intervals of your choosing from prior methods.
- Design changes with each sample.
- Consistent with an observational study.

Linear regression: Fixed vs. random design

- Assume homoscedastic errors.
- If the mean model is correct, either version of the bootstrap should perform well regardless of whether X is fixed by design or random.
- If X is fixed by design, mean-model misspecification will tend to result in an overstated variance if you treat X as random.
- If X is random by design, mean-model misspecification will tend to result in an understated variance if you treat X as fixed.

Stata: Example (MRI)

- regress height age, robust (recall)
- regress height age, vce(bs, reps(500))
- regress height age, vce(bs, reps(500) nodots)
- estat bootstrap, all

Stata: Example (MRI)

. regress height age, robust

Linear	regression
--------	------------

Number of obs	=	735
F(1, 733)	=	9.21
Prob > F	=	0.0025
R-squared	=	0.0120
Root MSE	=	9.6581

height	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
age	1953694	.0643711	-3.04	0.002	3217432	0689956
_cons	180.3453	4.805937	37.53	0.000	170.9103	189.7804

Stata: Example (MRI)

. regress height age, vce(bs, reps(500))

(running regress on estimation sample)

Bootstrap replications (500)	
	5
	. 50
	. 100
	. 150
	. 200
	. 250
	. 300
	. 350
	. 400
	. 450
	. 500

Linear regression	Number of obs	=	735
	Replications	=	500
	Wald chi2(1)	=	8.40
	Prob > chi2	=	0.0038
	R-squared	=	0.0120
	Adj R-squared	=	0.0107
	Boot MSE	=	9.6581

height	Observed Coef.	Bootstrap Std. Err.	z	P> z	Normal [95% Conf.	L-based Interval]
age	1953694	.0674101	-2.90	0.004	3274907	0632481
_cons	180.3453	5.000509	36.07	0.000	170.5445	190.1461

Stata: Example (MRI)

. regress height age, vce(bs, reps(500) nodots)

Linear	rearession

Number of obs	=	735
Replications	=	500
Wald chi2(1)	=	8.97
Prob > chi2	=	0.0027
R-squared	=	0.0120
Adj R-squared	=	0.0107
Root MSE	=	9.6581

height	Observed Coef.	Bootstrap Std. Err.	z	P> z	Normal [95% Conf.	-based Interval]
age	1953694	.0652377	-2.99	0.003	323233	0675058
_cons	180.3453	4.874817	37.00	0.000	170.7909	189.8998

Stata: Example (MRI)

. estat bootstrap, all

Linear regression

Number of obs	=	735
Replications	=	500

height	Observed Coef.	Bias	Bootstrap Std. Err.	[95% Conf.	Interval]	
age	19536938	0014101	.06523773	323233	0675058	(N)
				3367485	0664426	(P)
				3296939	0654481	(BC)
_cons	180.34533	.1100677	4.8748171	170.7909	189.8998	(N)
				170.8138	190.7536	(P)
				170.6618	190.2488	(BC)

- (N) normal confidence interval
- (P) percentile confidence interval
- (BC) bias-corrected confidence interval

Stata: Example (MRI)

- ▶ N: Normal Cl
- P: Percentile CI
- ► BC: Bias-corrected CI

Notes:

- ▶ There is plenty more to say about the bootstrap.
- You'll have to take advanced regression courses to learn more. Or study empirical process theory if you want to learn it from that angle :).