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TYPICAL INFERENCE

Confidence intervals and inverting the test:

» Consider the following general quantity, which follows a
familiar form:

D)

—0
(6)

» When using this quantity to construct Cls, we often rely on
two particular properties:

m)

» S is pivotal in large samples, meaning its asymptotic
distribution does not depend upon 6.

P S possesses a distribution that is approximately symmetric
about zero in large samples.



TYPICAL INFERENCE

Confidence intervals and inverting the test:
» Consider a coefficient, 8, from a regression model:
B-8 B -

SE(B)
P> Note that the pivotal property is embedded above. Further,

tay2,df < g(f) < tiayo,d
— ta/2,df§E(E) < E g < tlfa/2,df§E(E)
— _tl—a/2,df§E(E) < B-B < _ta/Q,dng(E)

— B - tl—a/2,df§E(E) < B <B- a/2,df§E(E)
> From symmetry property, further derive the following:
B - t1—a/2,df§E(E) < B <B+ tl—cx/2,df§E(E)

> These properties are the basis for forming symmetric Cls
based on large sample theory.



TYPICAL INFERENCE

Confidence intervals and inverting the test:

» When no such pivotal quantity exists, confidence intervals can
be obtained by directly inverting the test.

> “Find all B such that Hy : B = B9 cannot be rejected.”



TYPICAL INFERENCE

Confidence intervals and inverting the test:
» In linear regression, an exact distribution for E based on the
t-distribution depends upon normality of the errors.
P> That distribution is approximately correct for large samples
even if normality does not hold.

» In smaller samples, the nonparametric bootstrap can be used
to obtain Cls that do not rely on large sample theory.
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THE BOOTSTRAP

Main ideas:
» Let F denote cdf for (X,Y) or (Y|X), depending on context;
let Fy denote empirical cdf based on N observations.
> B =T(F), and hence B = T(Fy).
P> Absent parametric form, 'y is our best estimate of F.
» Repeat-sample of Fy with replacement gives information on
distribution of B* = T(IF},); asterisk denotes fixed Fy.
> Let {B%}2 | denote the (bootstrap) samples.
> Note two layers of variation:

» How well Fp approximates F (better as N " co by
Glivencko-Cantelli: supycp 47 [F(t) — Fn(t)| —as 0).

» How well {EZ}EZl approximates T(F%,) (better as B * o0).

» Which source of variation can we better control?



THE BOOTSTRAP

Estimator-attributed bias:

> Let Bt = T(F}.,) denote estimate based on bt bootstrap
sample. We may estimate bias as follows:

Bias = EZ(T( N:b) — T(Fn))
b=1
1& . 5 a4 5.2
= => B,—-B=B"-B~B-B
Bi=

> Note that E* = % Zle EZ for simplicity.

» Correction won't catch external sources of bias; be warned.



THE BOOTSTRAP

Covariance:

> We may estimate the covariance as well:
. 1 B
Cov(B) =5 (Bs—B)B;— BT
B-14
» For the k™ coefficient, we have:

B
U = Var(B) = Z [Bilk —



THE BOOTSTRAP

Confidence intervals: Normal approximation (bias-correction)

» Symmetric (1 — o) Cl:

(Bx — Biask) £ v/Tkz1_q o

» Assumptions:
» By — Bi ~ N (Biask, 2), which is symmetric and pivotal.
| I§a\sk and ¥ are good estimates of Bias, and o2.
» Good for cases where N is large enough that normal
approximation holds, but no known theoretical formula for
asymptotic variance.

» Can use QQ-plots to evaluate departures from normality.



THE BOOTSTRAP

Confidence intervals: Pivot based
> Let E;(p) denote pth quantile of k" coefficient of {E,”(‘}bB:l.

» Behavior of B — Ek approximately that of Ek — B}‘;

095 =~

o

( K(e/2) <Bi < B\Z(lfa/2)>

( k= Br(i—a/2) < Br — Br < Bi — Ez(a/2))
P< « — Bs K(1—a/2) < Bk EkSEk*EZ(a/z))
= P <2 k — Ak(l a/2) < B < 2ﬁk E/t(a/2)>

» Assumptions:

- P

%

> Ek — Bk asymptotically pivotal (not necessarily symmetric).



THE BOOTSTRAP

Confidence intervals:

P> There are plenty of other of bootstrap-based confidence
intervals. One simple one | did not cover is based on the
quantiles of the bootstrap samples.

P> The pivot-based confidence interval is generally understood to
have better properties.

» See empirical process theory for all kinds of other
generalizations, extensions, theoretical results.



THE BOOTSTRAP

Linear regression: Fixed design

| 2

>

Re-sample residuals €* from the existing residuals {&;}"; with
replacement.
Keep x; intact and form N new outcomes as y;* = xiTE+ €
fori=1,..., N.
Estimate BZ for b=1,..., N; form estimates/confidence
intervals of your choosing from prior methods.
Assumptions:

» Homoscedasticity of errors.

» Correct mean-model.

Consistent with a designed experiment/randomized trial.

If X is discrete, you can simply leave the x's as they are and
resample the outcomes separately within subgroup of X.



THE BOOTSTRAP

Linear regression: Random design
» Re-sample pairs (x¥, y*) from existing observations {x;, i}V
with replacement.
» Estimate EZ‘, for b=1,..., N; form estimates/confidence
intervals of your choosing from prior methods.
» Design changes with each sample.

» Consistent with an observational study.



THE BOOTSTRAP

Linear regression: Fixed vs. random design

» Assume homoscedastic errors.

» If the mean model is correct, either version of the bootstrap

should perform well regardless of whether X is fixed by design
or random.

> If X is fixed by design, mean-model misspecification will tend
to result in an overstated variance if you treat X as random.

> If X is random by design, mean-model misspecification will
tend to result in an understated variance if you treat X as
fixed.



THE BOOTSTRAP

Stata: Example (MRI)

» regress height age, robust (recall)

» regress height age, vce(bs, reps(500))

» regress height age, vce(bs, reps(500) nodots)
> estat bootstrap, all



THE BOOTSTRAP

Stata: Example (MRI)

regress height age, robust

Linear regression Number of obs = 735
F(1, 733) = 9.21
Prob > F = 0.0025
R-squared = 0.0120
Root MSE = 9.6581
Robust
height Coef. Std. Err. t P>|t| [95% Conf. Intervall
age -.1953694 .0643711 -3.04 0.002 -.3217432 -.0689956
_cons 180.3453 4.805937 37.53 0.000 170.9103 189.7804




THE BOOTSTRAP

Stata: Example (MRI)

. regress height age, vce(bs, reps(500))
(running regress on estimation sample)

Bootstrap replications (500)

12—} 3} 4} 5
50
100
150
200
250
300
350
400
450
500
Linear regression Number of obs = 735
Replications = 500
Wald chi2(1) = 8.40
Prob > chi2 = 0.0038
R-squared = 0.0120
Adj R-squared = 0.0107
Root MSE = 9.6581
Observed Bootstrap Normal-based
height Coef. Std. Err. z P>|z| [95% Conf. Intervall
age -.1953694 .0674101 -2.90 0.004 -.3274907 -.0632481
_cons 180.3453 5.000509 36.07 0.000 170.5445 190.1461




THE BOOTSTRAP

Stata: Example (MRI)

regress height age, vce(bs, reps(500) nodots)

Linear regression Number of obs = 735
Replications = 500
Wald chi2(1) = 8.97
Prob > chi2 = 0.0027
R-squared = 0.0120
Adj R-squared = 0.0107
Root MSE = 9.6581
Observed Bootstrap Normal-based
height Coef. Std. Err. z P>|z| [95% Conf. Intervall
age -.1953694 .0652377 -2.99 0.003 -.323233 -.0675058
_cons 180.3453 4.874817 37.00 0.000 170.7909 189.8998




THE BOOTSTRAP

Stata: Example (MRI)

. estat bootstrap, all

Linear regression Number of obs = 735
Replications = 500
Observed Bootstrap
height Coef. Bias Std. Err. [95% Conf. Intervall
age -.19536938 -.0014101 .06523773 -.323233 -.0675058 (N)

-.3367485 -.0664426 (P)
-.3296939 -.0654481 (BC)
_cons 180.34533 .1100677 4.8748171 170.7909 189.8998 (N)
170.8138 190.7536 (P)
170.6618 190.2488 (BC)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval



THE BOOTSTRAP

Stata: Example (MRI)

» N: Normal Cli
» p: Percentile Cl
» BC: Bias-corrected Cl



THE BOOTSTRAP

Notes:

P> There is plenty more to say about the bootstrap.

» You'll have to take advanced regression courses to learn more.
Or study empirical process theory if you want to learn it from
that angle :).



